Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.641
Filtrar
1.
Sci Rep ; 14(1): 8401, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600172

RESUMEN

REV-ERBα, a therapeutically promising nuclear hormone receptor, plays a crucial role in regulating various physiological processes such as the circadian clock, inflammation, and metabolism. However, the availability of chemical probes to investigate the pharmacology of this receptor is limited, with SR8278 being the only identified synthetic antagonist. Moreover, no X-ray crystal structures are currently available that demonstrate the binding of REV-ERBα to antagonist ligands. This lack of structural information impedes the development of targeted therapeutics. To address this issue, we employed Gaussian accelerated molecular dynamics (GaMD) simulations to investigate the binding pathway of SR8278 to REV-ERBα. For comparison, we also used GaMD to observe the ligand binding process of STL1267, for which an X-ray structure is available. GaMD simulations successfully captured the binding of both ligands to the receptor's orthosteric site and predicted the ligand binding pathway and important amino acid residues involved in the antagonist SR8278 binding. This study highlights the effectiveness of GaMD in investigating protein-ligand interactions, particularly in the context of drug recognition for nuclear hormone receptors.


Asunto(s)
Isoquinolinas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Ligandos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Isoquinolinas/química , Tiofenos/química , Ritmo Circadiano/fisiología
3.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664421

RESUMEN

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Asunto(s)
Relojes Circadianos , Proteínas Fúngicas , Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Unión Proteica , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/química , Mutación , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Análisis por Matrices de Proteínas
4.
Cell Rep ; 43(4): 114079, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613781

RESUMEN

Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal , Triptófano , Triptófano/metabolismo , Animales , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal/fisiología , Ratones , Masculino , Ratones Endogámicos C57BL , Estrés Fisiológico
5.
Nat Commun ; 15(1): 2834, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565846

RESUMEN

The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Ritmo Circadiano/fisiología , Temperatura , Sueño/fisiología , Drosophila , Relojes Circadianos/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología
6.
Ann Med ; 56(1): 2331054, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38635448

RESUMEN

BACKGROUND: Cognitive function, including moral decision-making abilities, can be impaired by sleep loss. Blue-enriched light interventions have been shown to ameliorate cognitive impairment during night work. This study investigated whether the quality of moral decision-making during simulated night work differed for night work in blue-enriched white light, compared to warm white light. METHODS: Using a counterbalanced crossover design, three consecutive night shifts were performed in blue-enriched white light (7000 K) and warm white light (2500 K) provided by ceiling-mounted LED luminaires (photopic illuminance: ∼200 lx). At 03:30 h on the second shift (i.e. twice) and at daytime (rested), the Defining Issues Test-2, assessing the activation of cognitive schemas depicting different levels of cognitive moral development, was administered. Data from 30 (10 males, average age 23.3 ± 2.9 years) participants were analysed using linear mixed-effects models. RESULTS: Activation of the post-conventional schema (P-score), that is, the most mature moral level, was significantly lower for night work in warm white light (EMM; estimated marginal mean = 44.3, 95% CI = 38.9-49.6; pholm=.007), but not blue-enriched white light (EMM = 47.5, 95% CI = 42.2-52.8), compared to daytime (EMM = 51.2, 95% CI = 45.9-56.5). Also, the P-score was reduced for night work overall (EMM = 45.9, 95% CI = 41.1-50.8; p=.008), that is, irrespective of light condition, compared to daytime. Neither activation of the maintaining norms schema (MN-score), that is, moderately developed moral level, nor activation of the personal interest schema (i.e. the lowest moral level) differed significantly between light conditions. The MN-score was however increased for night work overall (EMM = 26.8, 95% CI = 23.1-30.5; p=.033) compared to daytime (EMM = 23.1, 95% CI = 18.9-27.2). CONCLUSION: The results indicate that moral decisions during simulated night work in warm white light, but not blue-enriched white light, become less mature and principle-oriented, and more rule-based compared to daytime, hence blue-enriched white light may function as a moderator. Further studies are needed, and the findings should be tentatively considered.Trial registration: ClinicalTrials.gov (ID: NCT03203538) Registered: 26/06/2017; https://clinicaltrials.gov/study/NCT03203538.


The quality of moral decision-making, seen as the activation of cognitive schemas depicting different levels of moral development, was reduced during simulated night work in warm white light, but not blue-enriched light, compared to daytime.The quality of moral decision-making sems to be reduced during simulated night work, compared to daytime.More studies assessing the impact of night work and light interventions on the quality of moral decision-making are needed to validate these tentative findings.


Asunto(s)
Ritmo Circadiano , Sueño , Masculino , Humanos , Adulto Joven , Adulto , Sueño/fisiología , Estudios Cruzados , Ritmo Circadiano/fisiología , Cognición , Principios Morales , Tolerancia al Trabajo Programado/fisiología
7.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38558188

RESUMEN

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Asunto(s)
Médula Ósea , Relojes Circadianos , Ratones , Animales , Médula Ósea/metabolismo , Fotoperiodo , Ritmo Circadiano/fisiología , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Relojes Circadianos/genética
8.
Sci Rep ; 14(1): 7760, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565934

RESUMEN

Disrupted or atypical light-dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.


Asunto(s)
Ritmo Circadiano , Demencia Vascular , Animales , Ratones , Masculino , Femenino , Ritmo Circadiano/fisiología , Fotoperiodo , Reconocimiento en Psicología , Demencia Vascular/etiología , Cognición
9.
Chronobiol Int ; 41(4): 548-560, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557404

RESUMEN

Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.


Asunto(s)
Ritmo Circadiano , Dieta Alta en Grasa , Microbioma Gastrointestinal , Melatonina , Ratones Endogámicos C57BL , Animales , Melatonina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ritmo Circadiano/fisiología , Ratones , Citocinas/metabolismo , Fotoperiodo , Inflamación
10.
Chronobiol Int ; 41(4): 561-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557262

RESUMEN

Circadian typology, or "morningness" and "eveningness," is generally assessed using the Morningness-Eveningness Questionnaire (MEQ), a 19-item scale that could be burdensome in large-scale surveys. To overcome this, a 5-item version known as the reduced morningness-eveningness questionnaire (rMEQ), which is sensitive to the assessment of circadian typology, was developed; however, a validated Japanese version of the rMEQ is yet to be established. This study aimed to develop and validate the Japanese version of the rMEQ. Five essential items for the rMEQ were selected from existing Japanese MEQ data (N = 2,213), and the rMEQ was compiled. We conducted a confirmatory factor analysis for the psychometric properties of the rMEQ and confirmed its robust one-factor structure for evaluating morningness-eveningness (GFI = 0.984, AGFI = 0.951, CFI = 0.935, and RMSEA = 0.091). Reliability was evaluated via internal consistency of rMEQ items using Cronbach's α and McDonald's ω, and the values were 0.618 and 0.654, respectively. The rMEQ scores strongly correlated with MEQ (ρ = 0.883, p < 0.001), and classification agreement (Morning, Neither, and Evening types) between rMEQ and MEQ was 77.6% (Cramer's V = 0.643, Weighted Cohen's κ = 0.72), confirming the validity. The Japanese rMEQ may be a valuable tool for the efficient assessment of circadian typologies.


Asunto(s)
Ritmo Circadiano , Psicometría , Humanos , Ritmo Circadiano/fisiología , Encuestas y Cuestionarios , Masculino , Femenino , Adulto , Reproducibilidad de los Resultados , Japón , Adulto Joven , Persona de Mediana Edad , Sueño/fisiología , Análisis Factorial , Pueblos del Este de Asia
11.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625943

RESUMEN

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Asunto(s)
Ritmo Circadiano , Proteínas Circadianas Period , Animales , Ritmo Circadiano/fisiología , Temperatura , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , ARN/metabolismo , Núcleo Supraquiasmático/metabolismo , Mamíferos/genética
12.
Chronobiol Int ; 41(4): 567-576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602470

RESUMEN

Sleep and light education (SLE) combined with relaxation is a potential method of addressing sleep and affective problems in older people. 47 participants took part in a four-week sleep education program. SLE was conducted once a week for 60-90 minutes. Participants were instructed on sleep and light hygiene, sleep processes, and practiced relaxation techniques. Participants were wearing actigraphs for 6 weeks, completed daily sleep diaries, and wore blue light-blocking glasses 120 minutes before bedtime. Measures included scores of the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISS), Beck Depression Inventory-II (BDI-II), State-Trait Anxiety Inventory (STAI) and actigraphy measurements of sleep latency, sleep efficiency, and sleep fragmentation. Sleep quality increased after SLE based on the subjective assessment and in the objective measurement with actigraphy. PSQI scores were statistically reduced indicating better sleep. Scores after the intervention significantly decreased in ESS and ISS. Sleep latency significantly decreased, whereas sleep efficiency and fragmentation index (%), did not improve. Mood significantly improved after SLE, with lower scores on the BDI-II and STAI. SLE combined with relaxation proved to be an effective method to reduce sleep problems and the incidence of depressive and anxiety symptoms.


Asunto(s)
Afecto , Sueño , Humanos , Masculino , Femenino , Anciano , Afecto/fisiología , Sueño/fisiología , Actigrafía , Terapia por Relajación/métodos , Persona de Mediana Edad , Ritmo Circadiano/fisiología , Calidad del Sueño , Luz , Relajación/fisiología , Anciano de 80 o más Años , Depresión , Ansiedad
13.
Chronobiol Int ; 41(4): 587-597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606920

RESUMEN

The timing of radiotherapy (RT) delivery has been reported to affect both cancer survival and treatment toxicity. However, the association among the timing of RT delivery, survival, and toxicity in locally advanced nasopharyngeal carcinoma (LA-NPC) has not been investigated. We retrospectively reviewed patients diagnosed with LA-NPC who received definitive RT at multiple institutions. The median RT delivery daytime was categorized as morning (DAY) and night (NIGHT). Seasonal variations were classified into the darker half of the year (WINTER) and brighter half (SUMMER) according to the sunshine duration. Cohorts were balanced according to baseline characteristics using propensity score matching (PSM). Survival and toxicity outcomes were evaluated using Cox regression models. A total of 355 patients were included, with 194/161 in DAY/NIGHT and 187/168 in WINTER/SUMMER groups. RT delivered during the daytime prolonged the 5-year overall survival (OS) (90.6% vs. 80.0%, p = 0.009). However, the significance of the trend was lost after PSM (p = 0.068). After PSM analysis, the DAY cohort derived a greater benefit in 5-year progression-free survival (PFS) (85.6% vs. 73.4%, p = 0.021) and distant metastasis-free survival (DMFS) (89.2% vs. 80.8%, p = 0.051) in comparison with the NIGHT subgroup. Moreover, multivariate analysis showed that daytime RT was an independent prognostic factor for OS, PFS, and DMFS. Furthermore, daytime RT delivery was associated with an increase in the incidence of leukopenia and radiation dermatitis. RT delivery in SUMMER influenced only the OS significantly (before PSM: p = 0.051; after PSM: p = 0.034). There was no association between toxicity and the timing of RT delivery by season. In LA-NPC, the daytime of radical RT served as an independent prognostic factor. Furthermore, RT administered in the morning resulted in more severe toxic side effects than that at night, which needs to be confirmed in a future study.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Puntaje de Propensión , Humanos , Masculino , Femenino , Carcinoma Nasofaríngeo/radioterapia , Persona de Mediana Edad , Neoplasias Nasofaríngeas/radioterapia , Estudios Retrospectivos , Pronóstico , Adulto , Anciano , Resultado del Tratamiento , Ritmo Circadiano/fisiología , Factores de Tiempo , Radioterapia/efectos adversos , Radioterapia/métodos , Estaciones del Año
14.
Curr Biol ; 34(8): R307-R308, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653195

RESUMEN

Muraoka and Ueda introduce nyctinasty, a process by which plants move their leaves according to circadian timing.


Asunto(s)
Ritmo Circadiano , Hojas de la Planta , Ritmo Circadiano/fisiología
15.
Chronobiol Int ; 41(4): 577-586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588406

RESUMEN

Shift work has been found to disrupt the circadian system, leading to negative health effects. The objective of this study was to assess the progress and frontiers in research on the health-related influence of shift work. The study analyzed 3,696 data points from Web of Science, using the bibliometric software CiteSpace to visualize and analyze the field. The results showed a steady increase in annual publications, particularly in the last 5 years, with a rapid increase in publications from China. The United States contributed the most to the number of publications and worldwide collaborations. The most prolific institution and author were the Brigham and Women's Hospital and Professor Bjorn Bjorvatn, respectively. The Journal of Chronobiology International ranked at the top and focused primarily on shift worker research. In the first decade of study, the primary focus was on the associations between shift work and cardiovascular disease and metabolic disorders. Over time, research on the health effects of shift work has expanded to include cancer and mental health, with subsequent studies investigating molecular mechanisms. This study provides a comprehensive and intuitive analysis of the negative health impacts of shift work. It highlights existing research hotspots and provides a roadmap for future studies. Further research is needed to explore the adverse health consequences and related mechanisms of shift work exposure, as well as interventions to mitigate its health effects.


Asunto(s)
Bibliometría , Ritmo Circadiano , Horario de Trabajo por Turnos , Humanos , Ritmo Circadiano/fisiología , Tolerancia al Trabajo Programado/fisiología , Enfermedades Cardiovasculares
16.
Methods Mol Biol ; 2795: 123-134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594534

RESUMEN

Phase separation is an important mechanism for regulating various cellular functions. The EARLY FLOWERING 3 (ELF3) protein, an essential element of the EVENING COMPLEX (EC) involved in circadian clock regulation, has been shown to undergo phase separation. ELF3 is known to significantly influence elongation growth and flowering time regulation, and this is postulated to be due to whether the protein is in the dilute or phase-separated state. Here, we present a brief overview of methods for analyzing ELF3 phase separation in vitro, including the generation of phase diagrams as a function of pH and salt versus protein concentrations, optical microscopy, fluorescence recovery after photobleaching (FRAP), and turbidity assays.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , 60422 , Mutación , Luz , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas , Ritmo Circadiano/fisiología
17.
Front Neural Circuits ; 18: 1385908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590628

RESUMEN

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Asunto(s)
Hipotálamo , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Hipotálamo/metabolismo , Ritmo Circadiano/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Sueño , Arginina Vasopresina/metabolismo
18.
J Physiol Sci ; 74(1): 14, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431563

RESUMEN

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the ß1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.


Asunto(s)
Glaucoma , Presión Intraocular , Humanos , Malla Trabecular , Humor Acuoso/fisiología , Ritmo Circadiano/fisiología , Glucocorticoides
19.
Biochem Biophys Res Commun ; 704: 149705, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430699

RESUMEN

The circadian clock in Drosophila is governed by a neural network comprising approximately 150 neurons, known as clock neurons, which are intricately interconnected by various neurotransmitters. The neuropeptides that play functional roles in these clock neurons have been identified; however, the roles of some neuropeptides, such as Trissin, remain unclear. Trissin is expressed in lateral dorsal clock neurons (LNds), while its receptor, TrissinR, is expressed in dorsal neuron 1 (DN1) and LNds. In this study, we investigated the role of the Trissin/TrissinR signaling pathway within the circadian network in Drosophila melanogaster. Analysis involving our newly generated antibody against the Trissin precursor revealed that Trissin expression in the LNds cycles in a circadian manner. Behavioral analysis further demonstrated that flies with Trissin or TrissinR knockout or knockdown showed delayed evening activity offset under constant darkness conditions. Notably, this observed delay in evening activity offset in TrissinRNAi flies was restored via the additional knockdown of Ion transport peptide (ITP), indicating that the Trissin/TrissinR signaling pathway transmits information via ITP. Therefore, this pathway may be a key regulator of the timing of evening activity offset termination, orchestrating its effects in collaboration with the neuropeptide, ITP.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila melanogaster/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transducción de Señal , Relojes Circadianos/fisiología , Neuropéptidos/metabolismo
20.
PLoS Biol ; 22(3): e3002535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470868

RESUMEN

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.


Asunto(s)
Experimentación Animal , Animales de Laboratorio , Animales , Reproducibilidad de los Resultados , Ritmo Circadiano/fisiología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...